
Whole-Body Real-Time Motion Planning for Multicopters

Shaohui Yang1,2, Botao He1,3, Zhepei Wang1, Chao Xu1, and Fei Gao1

Abstract— Multicopters are able to perform high maneu-
verability yet their potential have not been fully achieved. In
this work, we propose a full-body, optimization-based motion
planning framework that takes shape and attitude of aerial
robot into consideration such that the aggressiveness of drone
maneuvering improves significantly in cluttered environment.
Our method accepts series of intersecting polyhedrons describ-
ing any 3D free spaces and outputs a time-indexed trajectory in
real time with a full-body collision-free fashion. We model the
drone as tilted cuboid, yet we argue that our framework can be
freely adjusted to fit aerial vehicles of all shapes. Guaranteeing
dynamic feasibility and safety conditions, our framework trans-
forms the original constrained nonlinear programming problem
to an unconstrained one in higher dimensions which is further
solved by quasi-Newton methods. Benchmark has shown that
our method improves the state-of-art with orders of magnitude
in terms of computation time and memory usage. Simulations
and onboard experiments are carried out as validation.

I. INTRODUCTION

As multicopters are endowed with increasingly diversified
tasks such as searching over highly complicated unstructured
indoor environment within bounded and narrow free spaces,
crossing over dense and small-scaled irregularly shaped gaps
and planning on-the-fly like birds to handle unexpected cir-
cumstances, unprecedented controllability over every single
point on the drone in real time is urgently required from
a realism perspective. The general statement is: carrying
out milliseconds-level motion planning tasks under tight
and rigorous geometrical constraints on entire body of the
multicopters.

Nevertheless, the aforementioned demand is still far from
fulfilled. As been pointed out by [1], kinodynamic motion
planning considering attitude of multicopters and obstacle
avoidance at the same time is a challenging task. A vital
reason is that the contour of an quadrotor along a trajectory
is non-convex as shown in Fig 1.

The main stream work-around is to ignore the orientation
of drones completely by dilating obstacles radically accord-
ing to its largest axis length, which leads to conservative
performance that does not fully exploit free spaces. For ex-
isting works that indeed consider the attitude, optimization-
based methods either formulate the problem on manifolds
residing in high dimensions or make strong but inaccessible
assumptions on the environments while search-based meth-
ods are applicable to certain resolution and optimality is only

1 State Key Laboratory of Industrial Control Technology, Institute of
Cyber-Systems and Control, Zhejiang University, Hangzhou, 310027, China.

2 School of Electrical Engineering and Computer Science, KTH Royal
Institute of Technology, SE-100 44 Stockholm, Sweden.

3 School of Automation, Nanjing Institute of Technology, Nanjing, China
Email:shaohuiy@kth.se, botao.he@njit.edu.cn,

{wangzhepei,cxu,fgaoaa}@zju.edu.cn

Fig. 1. Our method is able to generate highly aggressive trajectory under
hard geometrical constraints such as gap crossing. The purple ellipsoid disks
are simulated drone models at discrete time instants. It is trivial that the
contours of quadrotor along trajectory form a non-convex set.

guaranteed in the discretized space. Both methods return
unsatisfying results even at the cost of long computation time
and heavy memory usage.

We are dedicated to constructing a trajectory optimizer
that considers the dynamics and body shape of multicopters
to achieve passable and aggressive maneuvers in complex
environments. The rotation and translation of the rigid body
are deeply coupled given that drones are under-actuated
platforms. This work starts from our earlier optimization-
based trajectory planning approach that takes in a series of
polyhedrons as description of 3D free space and outputs a
dynamically feasible trajectory inside them. We extend it by
explicitly calculating the robot attitude along the trajectory
and constructing a penalty term as part of objective function.

Building on our previous work [2], this work contributes
to the following points:
• A milliseconds-level full-body optimization-based tra-

jectory planning algorithm is proposed with collision-
free and dynamic feasibility guarantee. To the best of
our knowledge, this is the first method that generate
trajectory satisfying all aforementioned constraints in
real-time.

• A study and analysis on the comparison between our
method and state-of-art.

II. RELATED WORK

The front-end of motion planning is about properly finding
and describing free spaces. Several works have concluded
series of convex polyhedrons suitable for the task. In [3],
polyhedrons are generated after taught by humans. Recent
work [4] builds polytopes directly from points clouds in

milliseconds. Safe flight corridors are created by inflating the
input path first to an ellipsoid then to a convex polyhedron
in [5]. The last one will be used in this work.

Back-end of full-body motion planning is typically
achieved in two distinctive ways: either dynamically ad-
justing platform shape according to the environment, or
optimizing / searching a passable trajectory under constraints
imposed by obstacles and fixed model shape.

Foldable drone by Falanga et al. [6] represents the first
type. Extra degrees of freedom provided by servos en-
ables morphology modification for irregular space passablity.
However, tilting a fixed drone like a bird rather than exploring
hard-to-maintain mechanisms is our main focus.

Some optimization-based methods start with strong as-
sumptions on geometrical constraints. Aggressive gap cross-
ing is achieved in rectangle ones with negligible thickness
and absolute knowledge of them in [7]. The assumption is
eased by [8] such that onboard gap detection is possible.
In [9], similar assumption still holds yet the optimizer
is replaced by reinforcement learning technique. All these
works are designed for certain gap crossing only. Lacking of
generality is their greatest drawback.

Other optimization methods happen directly on manifolds.
Watterson et al. [10] proposes a parameterization invariant
manifold trajectory optimization algorithm respecting con-
straints by safe corridor on manifolds. It demonstrates appli-
cation on SO(3) yet concludes nothing about resource usage
and comparison with other works. Meanwhile, manifolds are
parameter-heavy thus when computing Hessian, the curse of
dimensionality befalls.

Search-based motion planning framework considering the
drone’s attitude and shape is proposed by Liu et al. [11].
Constant control inputs are applied for fixed duration ∆t
to generate motion primitives, followed by a feasibility
checker to filter the safe ones that have no intersections
with the given point cloud. In practical implementation,
adaptive dimensionality scheme is used to accelerate motion
planning. However, the framework has following problems:
1. No smart way of generating motion primitives, causing
numerous useless explorations; 2. Range and step of control
inputs require fine-tuning; 3. Fixed control resolution makes
smooth and flexible intractable.

III. PRELIMINARIES

A. Generation of Body Attitude from Differential Flatness

The most straightforward way to consider the drone’s
attitude Rb in trajectory optimization is figuring out its
functional form. Fortunately, leveraging results by Mellinger
et al. [12], the orientation Rb = [r1b, r2b, r3b] ∈ SO(3) can
be written an algebraic function of four differentially flat out-
puts, namely σ = [px, py, pz, ψ]T where p = [px, py, pz]

T

represents the coordinate of drone center of mass(CoM) and
ψ is the yaw angle. We will get the explicit form of Rb(σ)
in this subsection and show later how this derivation can be
plugged into our optimization framework.

Fig. 2. World frame rw , intermediate frame ri and body frame rb.

Ignoring air resistance and other disturbing forces, the
force analysis of a quadrotor under Newton’s law is:

−mgr3w + fsr3b = mp̈ (1)

where r3w = [0, 0, 1]T is the world z-axis, r3b the body z-
axis, fs the sum of forces provided by four propellers and g
the gravitational acceleration, typically g = 9.81m/s.

A direct consequence of (1) is as follows:

r3b :=
t

A
(2a)

A :=
√
p̈x

2 + p̈y
2 + (p̈z + g)2, t := [p̈x, p̈y, p̈z + g]T (2b)

Now we introduce an intermediate frame denoted by ri
as shown in Fig. 2 with r3i = r3w. The x and y axis of are
ri rotated by angle ψ anti-clockwise:

r1i = [cosψ, sinψ, 0]T, r2i = [− sinψ, cosψ, 0]T (3)

Leveraging the coordinate ri, r2b can be written as:

r2b =
r3b × r1i

‖r3b × r1i‖
:=
k

B
(4a)

k := [−(p̈z + g) sinψ, (p̈z + g) cosψ, p̈x sinψ − p̈y cosψ]T

(4b)

B :=
√

(p̈z + g)2 + (p̈x sinψ − p̈y cosψ)2 (4c)

Since r2b and r3b are uni-length vectors, the remaining r1b

is straightforward to obtain without any normalizing term:

r1b = r2b × r3b :=
s

AB
(5a)

s :=

(p̈z + g)2 cosψ + p̈y
2 cosψ − p̈xp̈y sinψ

(p̈z + g)2 sinψ + p̈x
2 sinψ − p̈xp̈y cosψ

−(p̈z + g)(p̈x cosψ + p̈y sinψ)

 (5b)

We summarize this subsection with the following notation:

Rb(σ) =
[
r1b(σ) r2b(σ) r3b(σ)

]
(6)

and that the three axis are defined in (5),(4),(2) respectively.

B. Geometrically Constrained Trajectory Optimization for
Multicopers Framework Revisit

1) Optimality Condition for Unconstrained Problem: The
revisit starts from a multi-segment minimum control effort
problem for a chain of s-integrators:

min
p(t)

∫ tM

t0

u(t)TWu(t)dt (7a)

s.t. u(t) = p(s)(t),∀t ∈ [t0, tM] (7b)

p[s−1](t0) = p̄o,p
[s−1](tM) = p̄f (7c)

p[di−1](ti) = p̄i, 1 ≤ i < M (7d)

with the time duration [t0, tM] split into M stages by given
timestamps t0 < t1 < · · · < tM . The variable to be
optimized p(t) : [t0, tM]→ Rm is the flat output of system,
u is s-order derivative of p acting as control effort, W
is the given penalty matrix for control variable. p[s−1] =
[pT, ṗT, . . . , (p(s−1))T]T ∈ Rms in (7c) represents the given
initial and final conditions up to order s−1, p[di−1] ∈ Rmdi
in (7d) are the given derivatives of flat output at intermediate
timestamp ti up to order di − 1.

To solve problem (7) with the given quantities, we first
concatenate time allocation T = [T1, . . . , TM]T with Ti :=
ti−ti−1 and intermediate points q = [p̄o, p̄1, . . . , p̄M−1, p̄f].
Second, we construct matrices M(T) ∈ R2Ms×2Ms and
b(q) ∈ R2Ms×m following the pattern introduced in [2].
Finally, we solve the matrix equation:

M(T)c = b(q) (8)

and extract it under the format c = [cT
1 , . . . , c

T
M]T, c ∈

R2Ms×m, ci ∈ R2s×m. The ci matrices are coefficients of
polynomials.

By Theorem 2 (Optimality Condition) in [2], we guarantee
that the optimal solution to problem (7) is given by:

p(t) = pi(t− ti−1),∀t ∈ [ti−1, ti) (9a)

pi(t) := cT
i β0(t), t ∈ [0, Ti] (9b)

β0(t) := [1, t, t2, · · · , tN]T (9c)

with β0(t) to be the basis time vector, N = 2s − 1
is the degree of polynomial. We also derive the velocity,
acceleration and jerk of i-th trajectory for later usage:

vi(t) = cT
i β1(t) (10a)

ai(t) = cT
i β2(t) =

[
p̈x p̈y p̈z

]T (10b)

ji(t) = cT
i β3(t) (10c)

βj(t) = β
(j)
0 (t), j ∈ {1, 2, 3} (10d)

The above procedure describes how to find the optimal M -
stage trajectory parameterized by c given q and T . However,
our interest lies in finding the optimal intermediate points and
time allocation that leads to the best c(q,T):

min
q,T

H(q,T) (11a)

s.t. certain constraints (11b)

where H(q,T) := F (c(q,T),T) and F (c,T) is user-
defined the control effort of a piecewise polynomial with
parameters c and T . [2] also shows that given ∂F

∂q , ∂F∂c , both
∂H
∂q and ∂H

∂T can be obtained within O(M) time and space
complexity. Later chapter will show usage of this property.

2) Geometrically Constrained Optimization: The general
form of problem that [2] aims at is:

min
p(t),T

∫ T

0

u(t)TWu(t)dt+ ρ(T) (12a)

s.t. u(t) = p(s)(t),∀t ∈ [0, T] (12b)

G(p(t), . . . ,p(s)(t)) � 0,∀t ∈ [0, T] (12c)

p(t) ∈ F ,∀t ∈ [0, T] (12d)

p[s−1](0) = p̄o,p
[s−1](T) = p̄f (12e)

where T is the total time, p(t), u, W , p[s−1] are defined
similarly as (7), ρ(·) is the time regularization function, G
represents nonlinear inequalities, F represents the obstacle-
free region in the configuration space.

In our settings, p(t) ∈ R3 (thus m = 3) is part of σ and
we are ignoring the yaw angle from now on by setting ψ = 0.
The obstacle-free region(also known as flight corridor) is
approximated with M given polyhedrons inH-representation
and they are assumed to be consecutively intersected for
convenience:

F =

M⋃
i=1

PHi ⊂ R3 (13a)

PHi = {x ∈ R3|Aix � bi} (13b){
PHi ∩ PHj = ∅ if|i− j| > 1

PHi ∩ PHj 6= ∅ if|i− j| ≤ 1
(13c)

Under deduction in III-B.1, problem (12) is equivalent to
the following:

min
q,T

Jq(q,T) + ρ(‖T ‖1) (14a)

s.t. T � 0 (14b)
p(t) ∈ F ,∀t ∈ [t0, tM] (14c)

G(p(t), . . . ,p(s)(t)) � 0,∀t ∈ [t0, tM] (14d)

where p(t) comes from (9) and can thus be regarded as
p(q,T)(t) and Jq(q,T) := Jc(c(q,T),T) corresponding
to the integral of control efforts.

The general thoughts of solving (14) is to bypass the
constraints and do unconstrained optimization using quasi-
Newton method. For temporal and spatial constraints in (14b)
and (14c), we propose diffeomorphism based method to
eliminate them in [2]. We write T = T (τ) and q = q(ξ)
such that τ and ξ are unconstrained variables with higher
dimension. For general nonlinear constraints in (14d), we
add its discretized version to the objective function in (14a)
as penalizing term.

However, it is critical to note that by enforcing (14c), we
only guarantee that drone CoM is within the obstacle-free
area along the trajectory rather than the entire body of drone
because we do not take the drone’s attitude ans shape into

account. To overcome that, we formulate a series of nonlinear
constraints Gatt(p(t), p̈(t)) � 0 in the next section.

IV. FULL-BODY MOTION PLANNING

In this section, we first show an efficient way of modeling
the shape of drone and specify the full-body collision-
free conditions explicitly with the given free spaces (13).
Then, we further formulate it into nonlinear constraints Gatt
and soften it with time integral penalty with fixed relative
resolution. Finally, we derive the derivatives of penalty term
to add it up to the overall optimization framework.

A. Quadrotor Modeling and Trajectory within Polyhedrons

The H-representation of M closed convex polyhedrons in
(13b) can be alternatively written as: ∀i ∈ {1, 2, . . . ,M}

PHi = {q ∈ R3|(nki)T(q − oki) ≤ 0, k = 1, . . . ,Ki} (15)

with each polyhedron PHi composed of Ki hyperplanes
and each hyperplane characterized with normal vector nki
pointing inwards and one point oki on it.

To achieve full-body obstacle avoidance, we would like the
inequality (15) always holding for arbitrary point q ∈ Qi(t)

Qi(t) = {q|q = qoi (t) + pi(t)}
∀t ∈ [0, Ti],∀i ∈ {1, 2, . . . ,M}

(16)

where pi(t) is the drone CoM position along the i-th trajec-
tory and qoi (t) is the offset from any point on the drone from
CoM, both of which are in world coordinate. Non-convex
set Qi(t) can be interpreted as an union of all points on the
drone moving along the i-th trajectory, or an inflation of i-th
trajectory according to the drone model.

The general form of qoi (t) is:

qoi (t) =
[
ri1b ri2b ri3b

] [
q̃x q̃y q̃z

]T
= Ri

b(t)q̃

∀t ∈ [0, Ti], ∀i ∈ {1, 2, . . . ,M}
(17)

with carefully selected q̃ = [q̃x, q̃y, q̃z]
T ∈ Q̃. Modeling of

the drone determines Q̃. Here we list two examples but we
argue that this constant set Q̃ may vary in a great range and
only depends on the shape of certain multicopters.

In [11], the drone is modeled as an ellipsoid (See Fig. 3)
with radius r, height h and diagonal matrix E:

Q̃ellip = {Eq̃n|‖q̃n‖ ≤ 1} E := diag(r, r, h) ∈ R3×3

(18)
Though the above ellipsoid description is closer to the

actual shape of a drone, it suffers from the drawback that
there are infinitely many points to check. As a workaround,
the drone is modeled as cuboid with half length and width
= r and half height = h as shown in Fig. 3 such that only
eight vertices are to be considered:

Q̃cub = {q̃v =
[
±r ±r ±h

]T
, v = 1, 2, . . . , 8} (19)

Thus, one way of constructing nonlinear constraints to
achieve full-body collision-free is to combine (13b), (16) and
(19):

Gvatt(pi(t), p̈i(t)) = Ai(pi(t)+Ri
b(t)q̃v)−bi ∈ RKi (20a)

Fig. 3. Ellipsoid and cuboid model of drone. If height h is measured from
CoM that does not lie on the plane formed by propellers, ellipsoid in red
might not fully contain the drone. Cuboid model does not have this concern.

Gatt(pi(t), p̈i(t)) =
[
[Gvatt(pi(t), p̈i(t))T]8v=1

]T
∈ R8Ki

(20b)
Note that in (20), Gatt(pi(t), p̈i(t)) = Gatt(ci, Ti) is con-

structed such that the inflation of i-th trajectory is completely
within the i-th polyhedron, or simply Qi(t) ⊂ PHi ,∀t ∈
[0, Ti]. This is one reasonable way of construction, yet
it might lead to conservative optimization results since in
intersection of two polyhedrons, the inflated drone trajectory
set does not necessarily stay within either one. But as will
be shown in the experiments part, this does not matter much.

B. Construction of Constraint Violation Function

Since it is troublesome and intractable to directly handle
the nonlinear constraints Gatt(pi(t), p̈i(t)), as suggested by
[2], we only consider the potential violation happens at
normalized timestamps and construct the constraint violation
function Gatt : R2s×3×R+×[0, 1]→ R8Ki at the normalized
timestamp t̂ ∈ [0, 1] as:

Gkatt(ci, Ti, t̂) =
[
(nki)T(pi(t̂·Ti)+Ri

b(t̂·Ti)q̃v−oki)
]8
v=1
∈ R8

(21a)

Gatt(ci, Ti, t̂) =
[
[Gkatt(ci, Ti, t̂)T]Ki

k=1

]T
∈ R8Ki (21b)

Note that (20) and (21) have same content but different
appearance. The reason of writing the function in (21a) form
is for easier gradient derivation in later subsection.

Provided with a constant weight vector χ ∈ R8Ki , the
time integral penalty function over pi(t), denoted by Iatt :
R2s×3×R+×Z≥ → R+ is given by the quadrature of cubic
penalty over [0, Ti]:

Iatt(ci, Ti, κi) =
Ti
κi

κi∑
j=1

ωjχ
T max[Gatt(ci, Ti,

j

κi
),0]3

(22)
where max[·,0]3 is a composite function of entry-wise max-
imum and entry-wise cubic function. The pre-given constant
1
κi

is the relative resolution of the quadrature. The constant
scalar ωj is the j-th quadrature coefficient.

The penalty term along the entire trajectory is given by

IΣatt(c,T) =

M∑
i=1

Iatt(ci, Ti, κi) (23)

and as mentioned in III-B.2. It is added directly to the
objective function. Thus the problem defined in (14) has no
constraints and any quasi-Newton method can be deployed.

C. Derivation of Derivatives of Attitude Penalty

Now that the function Iatt(ci, Ti, κi) is a part of the
overall objective function and ci and Ti are the variables
to be optimized, it is necessary to compute the derivative
∂Iatt

∂ci
and ∂Iatt

∂Ti
. Gk,vatt is the v-th component of vector Gkatt.

Due to the limitation on pages, we leave the hardest parts of
deriving ∂Gk,v

att

∂ci
and ∂Gk,v

att

∂Ti
with fixed q̃v ∈ Q̃cub in [13].

It is easy to concatenate the derivative of Gk,vatt with
different k, v together to attain ∂IΣatt

∂c and ∂IΣatt

∂T and further
use them in quasi-Newton optimization methods.

D. Unifying the Framework

In earlier sessions, we finish constructing the substitution
IΣatt(c,T) and its derivatives for collision-free nonlinear
constraints Gatt in problem (14). However, a drone is not
able to fly as aggressively as we desire due to the limitations
on propeller thrust and difficulties on controllers. This is
typically known as the dynamic feasibility constraints which
can be equivalently transferred to maximum velocity and
acceleration bounds in general. Since highly tiltedness of
drone is expected in our method, including a jerk bound
is also necessary. All these nonlinear constraints Gdyn are
approximated by IΣdyn(c,T) in a similar way.

We must point out that an approximation has been made by
replacing Gatt,Gdyn with IΣatt, IΣdyn. Violation of nonlinear
constraints may happen because the approximation has only
finite resolution. However, later experiments proves that this
does not affect the overall quality of the final trajectory.

After adding the discretized penalty terms IΣatt(c,T) and
IΣdyn(c,T) into the objective function (14a) and bypassing
temporal and spatial constraints via diffeomorphism based
methods, the optimization problem in (14) is purely uncon-
strained. During the process, we use cddlib [14] to transform
polyhedrons between H-representation and V-representation
[15]. We use a customized LBFGS [16] optimizer 1 to solve
the problem in a quasi-Newton fashion.

V. RESULTS

A. Benchmark for Full-Body Motion Planning

Since there is no available optimization-based full-body
motion planning framework, we benchmark our solution
with the state-of-the-art search-based method by [11]2. Both
methods accept point cloud, start and goal states as well as
dynamic constraints. Theoretically speaking, constant control
should be applied in all three dimensions for primitive
generation, yet Liu’s method [11] suffers from the curse of
dimensionality heavily so it only generates motion primitives
on x-y plane with fixed z-axis value. Such distinction is
straightforward to see in Fig. 4(b). It also needs the user-
defined searching range, which is manually adjusted to fit for
respective starters and endings in latter benchmarks. Constant
control resolution makes no guarantee that the desired final
state to be reached exactly so a tolerance must be set.
Fig. 4(c) exposes this drawback.

1https://github.com/ZJU-FAST-Lab/LBFGS-Lite
2https://github.com/sikang/mpl_ros

Our method generates series of convex polyhedrons along
a given path and solves the unconstrained optimization
problem accordingly as described in III and IV. An overall
graphical comparison is shown in Fig. 4(a).

(a) Overview Comparison.

(b) 3D v.s. 2D.

(c) Ending Status.

Fig. 4. Left: Our method. Right: Liu’s method [11]. Fig. 4(a) shows our
smooth solution is contained in polyhedrons. Meanwhile, there are unused
expanded states shown as red squares in Liu’s work [11]. Fig. 4(b) shows
that our solution fully exploits the 3D free spaces while Liu’s solution is
only limited to fixed height in 2D. Fig. 4(c) shows that drone reaches steady
state eventually in our method while Liu’s method [11] makes no guarantee
about the final state, i.e., it might not be hovering.

As for detailed benchmarking, the same point cloud map is
used and drone all have radius r = 0.5 m, height h = 0.1 m.
Table I summarizes the parameters for both methods. ρ is the
time penalizing term. Different ρ are used to achieve the best
collision avoidance result in two methods. v̄, ā and j̄ are the
bounding of respective physical quantity. For Liu’s method
[11], ū is the maximum jerk input, du is the stepping of input
and τ is the constant input duration for single primitive. All
of them are identical as in [11]. For our method, χatt and κatt
appear in (22).χatt is the penalty weight. κatt is the relative

https://github.com/ZJU-FAST-Lab/LBFGS-Lite
https://github.com/sikang/mpl_ros

resolution or number of samples for penalty per pieces. Due
to limited pages, only parameters related to full-body motion
planning are listed. All comparisons are conducted under
Linux environment on an Intel Core i7-10750H CPU.

TABLE I
1ST ROW: OUR METHOD, 2ND ROW: LIU’S METHOD [11]

ρ χatt v̄ ā j̄ κatt
1024 60000 10 m/s 10 m/s2 60 m/s3 16
ρ τ v̄ ā ū du

10000 0.2 s 10 m/s 10 m/s2 60 m/s3 30 m/s3

The benchmark results are shown in Table II. Bold quanti-
ties stands for better physical meaning, i.e., shorter time, less
memory or faster speed. Npoly is the number of polyhedron
corridors, which roughly reflects the flight distance. Tcpu is
the CPU time for executing respective programs. Memory
usage comes from System Monitor. Tall is the trajectory
execution time. vmax and amax are the maximum velocity
and acceleration along the trajectory. Our amax may violate
the bound a little bit as been explained in IV-D. Our method
has demonstrated superior advantages in time consumption
and memory usage over Liu’s method [11] by orders of
magnitude while returning trajectories that fully leverage
the dynamical feasibility bounds such that highly aggressive
maneuvers are possible. This superiority increases as the
problem size becomes larger because the LBFGS optimizer
usually occupies same amount of memory and consumes
linearly increasing time. In Liu’s method [11] however, both
numbers grow exponentially. Since there is no universal rule
of quantifying how successful a certain trajectory is regarding
to obstacle avoidance, we do not include such comparisons
and leave the readers to see graphically whether the full-body
motion planning is of success.

TABLE II
1ST ROW: OUR METHOD, 2ND ROW: LIU’S METHOD [11]

Npoly Tcpu Memory Tall vmax amax

7 45.35ms 52.7MB 4.41 s 5.67 m/s 10.02m/s2

2000 ms 194.7 MB 4.40 s 6.46m/s 8.49 m/s2

10 62.58ms 52.6MB 5.78 s 7.59m/s 10.02m/s2

1774 ms 173.0 MB 5.80 s 7.23 m/s 8.49 m/s2

16 89.39ms 52.6MB 8.81 s 8.96m/s 10.03m/s2

38 667 ms 986.5 MB 9.60 s 8.65 m/s 8.49 m/s2

20 64.01ms 52.7MB 10.07 s 8.98m/s 10.25m/s2

119 912 ms 3276.8 MB 10.80 s 8.10 m/s 8.49 m/s2

B. Aggressive Flight Experiments

Real world experiments have been conducted as exe-
cutablity proof for the generated trajectory on drones. We
self-assemble a lightweight platform with diameter 214 mm,
height 62 mm and weight 190 g to demonstrate high aggres-
siveness. External VICON motion capture system is used to
obtain position and orientation of the drone. Convex polyhe-
dron series that form the corridor are generated in advance.
PixRacer flight controller is deployed onboard. We set up
a ground station receiving the attitude information from
VICON, generating trajectory in milliseconds and sending
the desired command to the PixRacer via Wi-Fi.

The experiment is about crossing a narrow gap with largest
width l = 170 mm as shown in Fig. 5. We set v̄ = 4.0 m/s,
ā = 8.5 m/s2, ρ = 1024. More details can be found in the
attached video.

(a) Sequential Instants.

(b) Left: Trajectory Generated; Right: Crossing Instant.

(c) Velocity and Acceleration along Time.

Fig. 5. Details of aggressive gap crossing. Fig. 5(a) and Fig. 5(b) shows
the environment setup and drone status. Fig. 5(c) provides velocity and
acceleration profiles. The trajectory fully exploits the dynamic feasibility
constraints with no violation.

VI. CONCLUSION

In this work, we build on our previous geometrically con-
strained motion planning framework to achieve online full-
body optimization-based trajectory generation within series
of polyhedrons. It is thus theoretically possible to integrate
the entire pipeline – generation of polyhedron from depth
sensor [4], optimization in full-body fashion with onboard
computer (this work) and feedback with state estimation
results [17] on flight controller – to a uniformed compact
platform. This will be our future work. Meanwhile, we are
also working on optimization under non-convex or manifold-
typed geometric constraints while preserving the advantage
of little resource usage.

REFERENCES

[1] J. Canny, B. R. Donald, J. Reif, and P. G. Xavier, “On the complexity
of kinodynamic planning,” Cornell University, Tech. Rep., 1988.

[2] Z. Wang, S. Yang, C. Xu, and F. Gao. Geometrically constrained
trajectory optimization for multicopters. [Online]. Available: https:
//zhepeiwang.github.io/pubs/gctofm.pdf

[3] F. Gao, L. Wang, B. Zhou, X. Zhou, J. Pan, and S. Shen, “Teach-
repeat-replan: A complete and robust system for aggressive flight in
complex environments,” IEEE Transactions on Robotics, 2020.

[4] X. Zhong, Y. Wu, D. Wang, Q. Wang, C. Xu, and F. Gao, “Generating
large convex polytopes directly on point clouds,” arXiv preprint
arXiv:2010.08744, 2020.

[5] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[6] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The foldable drone: A morphing quadrotor that can squeeze and fly,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209–216,
2018.

[7] G. Loianno, C. Brunner, G. McGrath, and V. Kumar, “Estimation,
control, and planning for aggressive flight with a small quadrotor with
a single camera and imu,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 404–411, 2016.

[8] D. Falanga, E. Mueggler, M. Faessler, and D. Scaramuzza, “Aggres-
sive quadrotor flight through narrow gaps with onboard sensing and
computing using active vision,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 5774–5781.

[9] J. Lin, L. Wang, F. Gao, S. Shen, and F. Zhang, “Flying through a
narrow gap using neural network: an end-to-end planning and control
approach,” arXiv preprint arXiv:1903.09088, 2019.

[10] M. Watterson, S. Liu, K. Sun, T. Smith, and V. Kumar, “Trajectory
optimization on manifolds with applications to quadrotor systems,”
The International Journal of Robotics Research, vol. 39, no. 2-3, pp.
303–320, 2020.

[11] S. Liu, K. Mohta, N. Atanasov, and V. Kumar, “Search-based motion
planning for aggressive flight in se (3),” IEEE Robotics and Automa-
tion Letters, vol. 3, no. 3, pp. 2439–2446, 2018.

[12] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference
on robotics and automation. IEEE, 2011, pp. 2520–2525.

[13] S. Yang, B. He, C. Xu, and F. Gao. Detailed derivations of
whole-body motion planning for micro aerial vehicles. [Online].
Available: https://syangav.github.io/publication/ICRA2021 addon

[14] K. Fukuda, “Cddlib reference manual,” Report version 093a, McGill
University, Montréal, Quebec, Canada, 2003.

[15] K. Fukuda et al., “Frequently asked questions in polyhedral compu-
tation.”

[16] D. C. Liu and J. Nocedal, “On the limited memory bfgs method for
large scale optimization,” Mathematical programming, vol. 45, no. 1-3,
pp. 503–528, 1989.

[17] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

https://zhepeiwang.github.io/pubs/gctofm.pdf
https://zhepeiwang.github.io/pubs/gctofm.pdf
https://syangav.github.io/publication/ICRA2021_addon

	Introduction
	Related Work
	Preliminaries
	Generation of Body Attitude from Differential Flatness
	Geometrically Constrained Trajectory Optimization for Multicopers Framework Revisit
	Optimality Condition for Unconstrained Problem
	Geometrically Constrained Optimization

	Full-body Motion Planning
	Quadrotor Modeling and Trajectory within Polyhedrons
	Construction of Constraint Violation Function
	Derivation of Derivatives of Attitude Penalty
	Unifying the Framework

	Results
	Benchmark for Full-Body Motion Planning
	Aggressive Flight Experiments

	Conclusion
	References

